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The associated Legendre projection provides a means for accelerating the dynam-
ical core of a global weather or climate model. Therefore, the goal is to determine the
fastest possible projection algorithm, of which this paper compares six: the standard
method, which computes the projection using a forward and backward associated
Legendre transform; the direct method, which uses a single projection matrix when
this approach results in fewer operations; the fast multipole method; the weighted
orthogonal complement method; the seminaive method; and a projection based on
transforms proposed by Mohlenkamp. Timing results indicate that all the projections
behave likeO(N3) algorithms up to at leastN = 200 spectral truncation. For this
range of resolutions, the weighted orthogonal complement has the lowest operation
count, best cache utilization, and best overall timings.c© 2001 Academic Press

Key Words:spherical harmonics; associated Legendre functions; fast multipole
method; weighted orthogonal complement.

1. INTRODUCTION

The spectral transform method (STM) is a popular method for approximating the dynam-
ics of the global atmosphere that requiresO(N3) operations per time step, whereN is the
spectral truncation of the model. Most other calculations in climate modeling and weather
forecasting areO(N2), with the exception of fast Fourier transforms (FFT), which are
O(N2 log N). For this reason, the search for a comparable fast associated Legendre trans-
form (the expensive component of a spherical harmonic transform) has been conducted
for quite some time. Some success has been achieved [1–3], but at break-even resolutions
which are too large for current global weather and climate applications.
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Recently [4], the authors solved the spherical shallow water equations (a 2-D subset of
the global atmospheric dynamical equations) using an FFT-based pseudospectral method.
This approach is well known to be unstable without the explicit projection of the solution
onto the space of harmonic functions. With projection, the method yields (to within machine
accuracy) the same results as the STM. There are two important conclusions of this work:
(1) the required number of associated Legendre transforms is reduced from nine (or more) to
six and (2) the associated Legendre projection operator provides a new avenue of approach
in the search for a fast algorithm. Indeed, Jakob and Alpert [5] have published an asymp-
totically O(N2) associated Legendre projection (or filter, in their terminology) that uses
the fast multipole method (FMM). This was subsequently improved by Yarvin and Rokhlin
[6]. More recently, the authors [7] have developed a projection algorithm that reduces the
memory requirement fromO(N3) to O(N2) and requires half the number of operations
compared to standard associated Legendre transforms. For purposes of completeness, we
will also consider projection algorithms composed of the latest attempts at fast associated
Legendre transforms.

Here, we compare implementations of four projection algorithms to determine (a) the
actual performance in terms ofN for the range of resolutions used by current atmo-
spheric models and (b) the relative performance of the algorithms. The organization of
the paper is as follows: Section 2 covers background information related to the associated
Legendre projection, Section 3 describes the various projection algorithms to be compared,
Section 4 presents serial timing comparisons of these algorithms, Section 5 discusses par-
allel implementations of the projection algorithms, and conclusions are drawn in Section 6.

2. BACKGROUND

2.1. Spherical Harmonic Transforms

A smooth spherical functionf (λ, θ), where 0≤ λ < 2π is the longitude and−π/2≤
θ ≤ π/2 is the latitude, can be approximated to spectral orderN by an expansion of spherical
harmonics given by

f (λ, θ) =
N∑

m=0

N∑
n=m

P̄m
n (θ)(am,n cosmλ+ bm,n sinmλ), (1)

whereP̄m
n (θ) are the normalized associated Legendre functions

P̄m
n (θ) =

1

2nn!

[
2n+ 1

2

(n−m)!

(n+m)!

]1/2

cosmθ
dn+m

dxn+m
(x2− 1)n,

with x = sinθ .
The computation ofam,n andbm,n (or harmonic analysis) in (1) consists of two phases.

First, a Fourier transform yields the Fourier functions

am(θ) =
∫ 2π

0
f (λ, θ) cosmλ dλ, (2a)

bm(θ) =
∫ 2π

0
f (λ, θ) sinmλ dλ, (2b)
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followed by an associated Legendre transform to obtain

am,n =
∫ π/2

−π/2
am(θ)P̄

m
n (θ) cosθ dθ. (3)

An analogous equation providesbm,n in terms ofbm(θ). All subsequent equations forbm,n

and bm(θ) will not be written, because they have the same form as the corresponding
equations foram,n andam(θ).

The computation off (λ, θ) (or harmonic synthesis) in (1) also occurs in two phases.
First, compute

am(θ) =
N∑

n=m

am,n P̄m
n (θ), (4)

followed by

f (λ, θ) =
N∑

m=0

(am(θ) cosmλ+ bm(θ) sinmλ). (5)

Equations (2a) and (2b) are forward Fourier transforms and (5) is a backward Fourier trans-
form. Neither are considered in this work because fast algorithms exist for these operations.
Equations (3) and (4) are forward and backward associated Legendre transforms, respec-
tively, which do not in general have fast algorithms and are consequently the focus of the
work presented here.

2.2. Associated Legendre Transforms on Gauss Grids

We discretizef (λ, θ) by choosingλi , i = 1 . . . Nlon andθ j , j = 1 . . . Nlat. If λi is equally
spaced, we can utilize fast Fourier transforms for (2a), (2b), and (5), making this the obvious
choice. Theθ j are most often chosen such thatxj = sinθ j , where thexj are the Gauss–
Legendre quadrature points on [−1, 1]. Thus the discrete form of (3) for the Gauss grid
becomes

am,n =
Nlat∑
j=1

am(θ j )P̄
m
n (θ j )w j , (6)

wherew j are the Gauss weights on [−1, 1]. In matrix notation, the backward and forward
associated Legendre transforms, (4) and (6) respectively, can be written

aF
m = PmaS

m, (7)

aS
m = PT

mWaF
m, (8)

whereaF
m = [am(θ1) . . .am(θNlat)]

T are the discrete Fourier functions,aS
m = [am,m . . .am,N ]T

are the spherical harmonic coefficients,W is the Nlat× Nlat diagonal weight matrix such
that(W) j, j = w j , andPm is theNlat× (N −m+ 1) backward transform matrix given by

Pm =


P̄m

m(θ1) · · · P̄m
N(θ1)

...
...

P̄m
m

(
θNlat

) · · · P̄m
N

(
θNlat

)
 .
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Note that we have two distinct upper summation bounds,N andNlat. A uniform resolution
of waves on the sphere is achieved via a triangular truncation or equivalently by the restriction
N < min(Nlat, Nlon/2). Often, it is desirable forN to be even smaller. As an example, for
nonlinear PDEs with quadratic terms, the 2/3 ruleN = [min(2Nlat, Nlon)− 1]/3 is used to
prevent aliasing errors. Other truncations are possible as well. For this reason, in the future
we will substituteNtr for N to indicate a (possibly) truncated expansion.

2.3. Associated Legendre Transforms on Arbitrary Grids

Machenhauer [8] extended discrete associated Legendre transforms to equally spaced
gridsθ j in such a way that they could be computed in the same number of operations as the
Gaussian distributions. In [7], this capability was extended to arbitrary grids as follows. The
backward transform matrixPm is defined as before, but theNlat× Nlat weight matrix is no
longer diagonal and is different for even and oddm. For evenm,W0 = (P0PT

0 )
−1, where

P0 is constructed forNtr = Nlat− 1. For oddm,W1 = (P̃1P̃T
1 )
−1, whereP̃1 is a rank-one

augmentation ofP1; see [7] for details. If we define and store the forward transform matrix

ZT
m = PT

mW`, (9)

where` = 0 (1) if m is even (odd), then the Gaussian and arbitrary grid transforms can
be computed in the same number of operations, at the expense of doubling the storage
requirements. Thus the forward transform (8) becomes

aS
m = ZT

maF
m, (10)

and the backward transform (7) is equally valid on a Gauss or arbitrary grid. Note that
the forward transform matrix defined in (9) is equivalent to the forward transform matrix
defined by Machenhauer [8] for the case whenθ j is an equally spaced grid.

2.4. The Associated Legendre Projection

The vector of discrete Fourier functionsaF
m has constant lengthNlat, while the vector of

spherical harmonic coefficientsaS
m has the usually shorter (never longer) lengthNtr −m+ 1.

Thus the computation ofaS
m in (10) followed by the recomputation ofaF

m in (7) will usually
result in the loss of degrees of freedom for all cases exceptm= 0 whenNtr = Nlat− 1.
Specifically, this operation will perform a weighted least squares projection [9] of the
original aF

m onto the space of the associated Legendre functions with triangular truncation
Ntr, and can be written

ãF
m = PmZT

maF
m, (11)

= FmaF
m, (12)

whereFm = PmZT
m is theNlat× Nlat associated Legendre projection matrix for zonal wave

numberm, andãF
m is the vector of projected discrete Fourier functions.

This projection operator is useful [4, 10] for stabilizing spherical shallow water mod-
els with nonspherical harmonic numerical approximations. In its “naive” form (11), the
projection costs the same as two associated Legendre transforms. A three-variable shallow
water model requires the equivalent of six associated Legendre transforms for stabilization,
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as compared to nine transforms for the most efficient spectral transform model [11]. This
alone represents a speedup that is compounded using the accelerated projection algorithms
compared in this paper.

3. PROJECTION ALGORITHMS

The application for which the following projection algorithms are intended is an at-
mospheric model with equally spaced latitude points. Because the point distribution is
symmetric about the equator, and the associated Legendre functions are either symmetric
or antisymmetric about the equator, all the algorithms take advantage of the well-known
symmetry optimization. Namely, theaF

m are decomposed into even and odd components
before the computations, resulting in two sets of computations with a quarter of the original
number of operations, giving an overall savings of a factor of two.

3.1. The Standard Algorithm

The standard algorithm explicitly computesaS
m from (10) and theñaF

m from (7). The
theoretical mult/add operation count (and the standard against which we will measure other
projections) for this algorithm is

CStd(m) = Nlat(Ntr −m+ 1),

which is plotted in Fig. 1 and labeled “Std.” Here we present the operation counts for three
projections, as functions ofm, to clearly reveal contributions to the total operation counts.

3.2. The Direct Algorithm

The direct algorithm was proposed by Yarvin and Rokhlin [6] as a reference comparison
for the FMM. It computes the projection two different ways: by direct computation of (11)
for largem, or of (12) for smallm. The crossover occurs atm= Ntr + 1− Nlat/2. The
resulting operation count for the direct method is

CD(m) =
{

N2
lat

/
2, m≤ Ntr + 1− Nlat/2,

Nlat(Ntr −m+ 1), m> Ntr + 1− Nlat/2.
(13)

The expressionCD(m) is plotted in Fig. 1 and labeled “D.”

FIG. 1. Operation counts forO(N3) algorithms. “Std” refers to the standard algorithm, “D” to the direct
method, and “WOC” to the weighted orthogonal complement.



344 SPOTZ AND SWARZTRAUBER

FIG. 2. Theoretical savings curves, relative to the standard algorithm as a function ofR= Nlat/(Ntr + 1).

We can estimate the theoretical savings of the direct algorithm relative to the standard
algorithm by

SD = 1− 2
∫ Ntr

0 CD(m) dm

2
∫ Ntr

0 CStd(m) dm
=
(

1− R

2

)2

, (14)

whereR is the ratioR= Nlat/(Ntr + 1). Specifically, atR= 1 (no truncation), the savings
is 25%, and atR= 1.5 (the 2/3 rule), the savings is 6.25%. The 2s preceding the integrals
in (14) are the result of computing bothãF

m andb̃
F
m for everym. Equation (14) is plotted in

Fig. 2, as a comparison of algorithm savings versus the standard algorithm.
The direct algorithm as described in [6], and implemented in the results section, contains

an additional optimization by noting that̄Pm
n (θ j ) is zero to absolute machine accuracy

in a neighborhood of the poles that increases with increasingm. The effect, not included
in (13) and (14) nor Figs. 1 and 2, is to provide a savings of approximately 10%. We
will refer to this as the pole optimization. Note that it would be possible to apply the
pole optimization to the standard algorithm, but since production codes for spectral global
weather or climate models do not generally employ this optimization, not including it with
the standard algorithm provides a more meaningful comparison.

3.3. The Fast Multipole Algorithm

Jakob-Chien and Alpert [5] proposed an associated Legendre projection which takes
advantage of the fast multipole method, resulting in an asymptoticallyO(N2

lat) algorithm.
They observe from (4) and (6) that given discrete Fourier functions on a Gauss grid, the
projected Fourier function can be computed at anyθ by

ãm(θ) =
Ntr∑

n=m

Nlat∑
j=1

P̄m
n (θ j )P̄

m
n (θ)w j am(θ j )

=
Nlat∑
j=1

w j am(θ j )

Ntr∑
n=m

P̄m
n (θ j )P̄

m
n (θ),
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to which the Christoffel–Darboux formula can be applied to give

ãm(θ)

εm
Ntr+1

= P̄m
Ntr+1(θ)

Nlat∑
j=1

w j am(θ j )P̄m
Ntr
(θ j )

sinθ − sinθ j
− P̄m

Ntr
(θ)

Nlat∑
j=1

w j am(θ j )P̄m
Ntr+1(θ j )

sinθ − sinθ j
, (15)

where

εm
n =

√
(n2−m2)/(4n2− 1).

For θ = θ j the quotient is evaluated using l’Hˆopital’s rule. The right-hand side of (15) can
be evaluated forNlat differentθs for a givenm with two applications of the FMM inO(Nlat)

operations. A complete projection for allm is thusO(NlatNtr).
Application for a Gauss grid is obvious: simply chooseθ = θ j , whereθ j are Gauss

nodes in latitude forj = 1 . . . Nlat. For an arbitrary grid, function values on the grid can
first be interpolated to a Gauss grid with a single application of the FMM [12] before (15)
is computed. Our experiments indicate that this interpolation adds less than 5% overhead
to the calculation compared to a Gauss grid computation.

Yarvin and Rokhlin [6] improved upon the FMM approach, and their implementation is
compared in the current work. In [6], it is observed that Eq. (11) is still the fastest algorithm
for largem, and although it is utilized in their fast multipole algorithm, they do not mention
at whatm the switch is made.

The operation count for the FMM can be approximated by

CFMM(m) ≈ K Nlat,

whereK is a constant and depends in part on some implementation choices such as desired
accuracy (we chose for our experiments an accuracy of 10−6). Since the vertical axes in
Fig. 1 are scaled byN2

lat,CFMM(m), does not have a convenient representation on the plot.
As anO(N2

lat) algorithm with significant overhead, the resolution at which its experimental
timings break even with the other algorithms is of interest.

3.4. The Weighted Orthogonal Complement Algorithm

The weighted orthogonal complement (WOC) projection is developed in [7] for non-
truncated expansions. Here we review that algorithm and develop the truncated version.
In [7], the Nlat× Nlat weighted orthogonal complement matricesQ` and their inversesR`

are defined for̀ = 0 and 1. These in turn define theNlat× (Nlat−m) matricesQ`
m and

R`
m which are obtained by deleting the firstm columns fromQ` andR`, respectively. It is

demonstrated that the projection is given by

Fm = Q`
m

(
R`

m

)T
, ` =

{
0, m even,

1, m odd,
(16)

which provides an alternative to (11) with the same operation count, but which requires
O(N2

lat) storage rather thanO(NlatN2
tr). Note that because [7] assumesNtr = Nlat− 1,Q0

0 =
Q0 andR0

0 = R0.
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We can useQ` andR` to improve the operation count of the projection. DefineNlat×m
matricesQ̄`

m andR̄`
m as the firstm columns ofQ` andR` so that

Q` = [Q̄`
m,Q

`
m

]
,

R` = [R̄`
m,R

`
m

]
.

ThusQ̄`
m andR̄`

m havem columns, or equivalently the size of these matrices increases with
increasingm. The sizes of matricesQ`

m andR`
m behave in the opposite manner. It follows

for the untruncated case that

I = F0 = Q`(R`)T = Q̄`
m

(
R̄`

m

)T +Q`
m

(
R`

m

)T
,

for anym. Equivalently,I = Gm + Fm, whereGm = Q̄`
m(R̄

`
m)

T , giving

ãF
m =

[
I − Q̄`

m

(
R̄`

m

)T]
aF

m. (17)

Thus the projection for a givenm can be computed withNlat×m mult/adds, which is a
significant improvement over (16) form< Nlat/2.

To extend the WOC to truncated projections, we must alter our definitions of the orthog-
onal complement matrices. Namely, the truncated transform matricesQ`

m andR`
m are now

obtained by deleting the firstm columns fromQ` andR` as well asthe lastNlat− Ntr − 1
columns, giving them dimensionNlat× (Ntr −m+ 1). ThusQ0

0 6= Q0 andR0
0 6= R0 unless

Ntr = Nlat− 1. These last columns become part ofQ̄`
m andR̄`

m, which now have dimension
Nlat× (Nlat− Ntr +m− 1), and thus the truncation space always resides in these matrices.
By changing the matrices in this way, we decrease the number of operations required by (16)
for a givenm and increase the number of operations required by (17). The WOC operation
count is

CWOC(m) =
{

Nlat(Nlat− Ntr +m− 1), m≤ Ntr + 1− Nlat/2,

Nlat(Ntr −m+ 1), m> Ntr + 1− Nlat/2.

An estimate of the theoretical savings of the WOC algorithm relative to the standard algo-
rithm is

SWOC = 1− 2
∫ Ntr

0 CWOC(m) dm

2
∫ Ntr

0 CStd(m) dm
= 2

(
1− R

2

)2

, (18)

where R is again the ratioR= Nlat/(Ntr + 1). At R= 1 (no truncation), the savings is
50%, and atR= 1.5 (the 2/3 rule), the savings is 12.5%. An additional savings is obtained
by using the pole optimization described at the end of Section 3.2.

Figure 1 is an illustration of the operation counts for the threeO(N3) algorithms with and
without truncation. The truncated plot is simply a leftward shift of the untruncated plot with
the left-most operations eliminated. It also illustrates that there is still no direct algorithm
with a lower operation count than the standard approach form> Ntr + 1− Nlat/2.

Figure 2 is a plot of Eqs. (14) and (18) to illustrate the relative savings of the direct and
WOC algorithms with respect to the standard algorithm.
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3.5. The Seminaive Algorithm

The seminaive algorithm is based upon forward and backward seminaive transforms,
which are the standards against which Healyet al.[2] compare their transforms. A forward
seminaive transform consists of computingaC

m, which is the discrete cosine transform of
aF

m. Using ideas inspired by Dilts [13], theaS
m are computed directly fromaC

m using dense
matrices. The transform matrices converting theaS

m back toãC
m contain zeroes which can be

exploited for a 33.3% savings. Thus the computation of the projected cosine coefficients can
be done at a savings of roughly 16.7% compared to the standard algorithm. To this you must
add the overhead of the discrete cosine transforms in order to start withaF

m and end with̃aF
m.

We used the software package SpharmonicKit 2.5 (A.1) to obtain timing results for
the seminaive algorithm, which has certain restrictions. Namely, the package requires that
Nlat = 2Ntr, which we compare to the untruncated algorithms, leaving no suitable option
for comparing against 2/3 rule algorithms. SpharmonicKit contains additional transform
routines, namely the Driscoll–Healy midpoint algorithm and the hybrid algorithm. These
are known to be slower than the seminaive algorithm at the resolutions of interest, so their
development was not pursued.

3.6. The Mohlenkamp Algorithm

Mohlenkamp [3] has proposed associated Legendre transforms with computational com-
plexitiesO(N5/2 log N) andO(N2(log N)2). These rates are achieved by partitioning lati-
tude space and using local trigonometric expansions. While theO(N2(log N)2) algorithm
is asymptotically faster, theO(N5/2 log N) algorithm performs better at the resolutions of
interest and is the one compared here. Mohlenkamp has made publicly available a library
(A.2) called FTSH 1.1 (Fast Transforms for Spherical Harmonics), from which we con-
structed a projection algorithm for timing comparisons. These routines allow the accuracy
to be specified; we chose 10−6 to be consistent with the fast multipole projection.

4. SERIAL TIMING RESULTS

Although the discrete harmonic projection has been generalized to arbitrary point dis-
tributions, for our experiments we have chosen (when the given algorithm allows it) an
unshifted equally spaced distribution which includes the poles, because the majority of
global atmospheric models that can take advantage of the projection are formulated on eq-
uispaced grids. For this distribution, an equiangular grid is given byNlat = Nlon/2+ 1. Thus
for the untruncated projection,Ntr = min(Nlat, Nlon/2)− 1= Nlon/2− 1= Nlat− 2, and
for the 2/3 rule projection,Ntr = [min(2Nlat, Nlon)− 1]/3= (Nlon− 1)/3= 2Nlat/3− 1.

We begin with an attempt to obtain timing results which mirror the theoretical operation
count plots of Fig. 1 for a givenNlat with no truncation. As Fig. 3 indicates, factors other
than operation count have an impact on timings of the standard algorithm, in this case for
Nlat = 65. This figure represents the results of three nearly identical codes which perform
an associated Legendre projection via (11), (16), and (17), respectively. The only optimiza-
tion included is the symmetry reduction and thus this plot does not represent results for
complete algorithms. The codes differ only in the calling arguments todgemv, the double
precision basic linear algebra subprogram (BLAS) routine (A.3) which performs a single
matrix–vector product. As the first two lines represent algorithms with identical operation
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FIG. 3. Standard and weighted orthogonal complement timings as a function ofm for the untruncated pro-
jection atNlat = 65.

counts, we can conclude that the difference in timings is due to memory and hardware ef-
fects. The standard algorithm requires that a newPm andZT

m be loaded into cache for every
m. The other two routines, however, can reuse theQ` andR` once they have been loaded.
This strongly suggests that cache reutilization accounts for the improved performance of the
WOC algorithms over the standard algorithm. Obviously, this performance gain is resolu-
tion and hardware specific; different sizes and levels of cache can have a great effect. In this
case, results are on a Sun Ultra 60 processor with 4MB cache and the standard algorithm
incurs approximately 15% overhead. Experiments at other resolutions indicate that cache
overhead for the standard algorithm at other resolutions are generally worse. Note that the
weighted orthogonal complement algorithms are not immune from cache effects, but the
performance loss is less pronounced than for the standard algorithm.

It is known [14, 15] that the standard algorithm can be implemented withO(N2
lat) storage.

Only P̄0
n and P̄1

n are stored and all other associated Legendre functions are computed on-
the-fly using an orthogonal and consequently very accurate four-term recurrence relation
[7]. In fact, this approach can be used to reduce memory bandwidth problems such as those
illustrated in Fig. 3. This technique becomes more desirable as processor speeds continue
to outpace memory speed. However, the WOC algorithms require fewer operations than
an algorithm in which the associated Legendre functions must be computed on-the-fly. For
this reason, the compute-on-the-fly algorithm is not considered here.

Both the direct and FMM algorithms also require the loading of newO(N2
lat) matrices

into cache for everym, and so it is likely that they will exhibit the same type of timing
characteristics as the standard algorithm. Figure 4 is a timing plot for these algorithms at
the same resolution and on the same scale as Fig. 3. Included in the plot is the complete
WOC algorithm, which now includes the pole optimization as well as the crossover switch
between Eqs. (16) and (17), and as such it provides the actual performance comparison.
Evidently, the direct and FMM algorithms are experiencing poor cache performance as
seen by comparing the direct method in Figs. 1 and 4. Nevertheless, the direct method
represents a clear savings over the standard approach. At this resolution, the total FMM
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FIG. 4. Direct, fast multipole, and complete weighted orthogonal complement timings as a function ofm for
the untruncated projection atNlat = 65.

time is roughly equivalent to the direct approach. The WOC curve is relatively smooth, and
careful inspection reveals a performance increase compared to the simpler implementation
in Fig. 3, which does not include the pole optimization.

Given the results in Figs. 3 and 4, we can predict that the full projection algorithm
timings should result in a greater savings for the WOC algorithm relative to the others
than is predicted by the operation counts in Section 3. This prediction is realized by the
results plotted in Figs. 5 and 6, which are full projection timings without truncation and
with the 2/3 rule, respectively. The sequence of resolutions studied are as in [5] (except for
the seminaive algorithm, which requires thatNlat be a power of two), and the maximum

FIG. 5. Experimental, untruncated projection timings vsNlat.
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FIG. 6. Experimental, 2/3 rule projection timings vsNtr.

resolution for a given algorithm is determined by the largest problem that can be stored in
the 128MB of memory on the Sun Ultra 60 workstation on which the experiments were
performed. Because of itsO(N2

lat) storage requirement, the WOC algorithm could be timed
at higher resolutions than the other algorithms.

Predictably, the standard and WOC algorithm timings bound the direct method timings,
but more interestingly, these twoO(N3

lat) algorithms also bound the FMM, which indicates
that the FMM has not yet reached an asymptote ofO(N2

lat).
The FMM performance can be characterized as follows: it is always faster than the

standard algorithm; it is slower than the WOC algorithm at all of the resolutions studied;
and it performs comparably to the direct method, although it does break even and surpass
the direct method atNtr = 63, 79 for the untruncated and 2/3 rule projections, respectively.

The Mohlenkamp projection is slower than the standard algorithm at almost all the
resolutions studied, although it may exhibit a slope slightly less than theO(N3) curves. For
the 2/3 rule, it intersects the standard curve at approximatelyNtr = 200, which is consistent
with Mohlenkamp’s claim of break-even timings atNtr = 128 [3]. The seminaive projection,
which is timed only for the untruncated case, exhibits significant overhead because of the
required discrete cosine transforms and the fact that the required latitude points are double
the number of the other algorithms.

Figures 5 and 6 are log–log plots to highlight the slopes of the lines, but this format makes
the percent savings of the various algorithms relative to the standard algorithm difficult to
discern. These savings are plotted in Figs. 7 and 8 for the untruncated and 2/3 rule cases,
respectively. The seminaive and Mohlenkamp algorithms are not shown because they did
not result in savings for the resolutions studied.

Recall that the theoretical savings resulting from operation counts for the direct method
is 12.5% and 6.25% for untruncated and 2/3 rule, respectively. For the WOC algorithm,
the operation count savings are 50% and 25%, respectively. The results of Figs. 7 and 8
are always superior to these estimates and often far superior. These additional savings are
due to the pole optimization, and in the case of the WOC, cache reutilization. Note that
the minimum savings for the WOC algorithm occur at or near the resolution plotted in
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FIG. 7. Experimental, untruncated projection savings relative to the standard algorithm vsNlat.

Fig. 3, indicating that the cache overhead for the standard algorithm plotted in this figure is
worse for higher resolutions (or equivalently, the cache efficiency for the WOC algorithm
is better). The percent savings for the WOC algorithm is often higher than 80% and 60%
for the untruncated and 2/3 rule projections, respectively.

5. A DISCUSSION OF PARALLEL IMPLEMENTATIONS

Global weather and climate codes are large enough that distributed memory parallel im-
plementations are necessary, and if a projection algorithm is to be used in such a code,

FIG. 8. Experimental, 2/3 rule projection savings relative to the standard algorithm vsNtr.
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a strategy for parallel implementation must be devised. In current spectral models, com-
munication is isolated and minimized by utilizing 1-D decompositions in the latitude and
longitude directions and using a parallel transpose algorithm to transfer between the two
representations, depending on which decomposition is needed at which point in the ex-
ecution of a single time step. In practice, the discrete Fourier functionsaF

m and bF
m are

transposed, so these functions are decomposed two ways, namely, with respect to latitude
coordinatesθ j and with respect to zonal wave numberm. Since the projection operates on
aF

m andbF
m and all the algorithms can be logically decomposed with respect tom, parallel

implementation of the projection algorithm is straightforward: decompose with respect to
m; communication will occur elsewhere in the model.

A well-designed model using the associated Legendre projection (see, for example, [10])
will not add any additional transposes compared to the standard spectral transform method.
Therefore, the key issue in parallelizing a projection algorithm is domain decomposition
with respect tomand the resulting load balance. Load balancing for triangular work profiles
such as the standard algorithm is accomplished in the straightforward manner of matching
m with large operation counts with correspondingm with low operation counts. For the
standard algorithm, wave numberm would be matched with wave numberNtr −m, and
then the matched wave numbers could be distributed equally across processors. Similarly,
for the untruncated WOC algorithm,m could be matched withNlat/2+m (for m< Nlat/2)
to achieve a balanced workload.

A load balancing problem occurs when we attempt to decompose the direct or WOC
algorithms for a truncated projection. As an inspection of the right plot of Fig. 1 reveals,
there is no trivial matching of wave numbers which will balance the direct or WOC work-
loads while simultaneously allowing anequaldecomposition with respect tom. This equal
decomposition is critical because there are other pieces of the model which will require a
decomposition with respect tom: spatial differentiation, right-hand side calculations, time
stepping, elliptic solvers, and so forth. These other pieces can be balanced with an equal
number ofm per processor.

Since the WOC projection algorithm is the most efficient in terms of operation count,
cache utilization, and overall performance, we will restrict our investigation of parallel
implementations to this algorithm. We seek first a timing profile of the projection as a
function ofm for a typical resolution (Nlat = 65) using the 2/3 rule (Ntr = 42). This profile
is given in Fig. 9.

Our goal now is to apply various decomposition strategies, with respect tom, to the data
presented in Fig. 9 in order to obtain an estimate of how load imbalance will affect scaling.
The first strategy will be the “natural” decomposition, where contiguous chunks of size
Ntr/p are assigned top processors numbered 0. . . p− 1. The second strategy will be the
“round robin” decomposition, in which each consecutivem is assigned to a new processor,
starting with 0. When the last processor number is reached, the processor assignment is reset
to 0. The last strategy to be investigated will be “reversed round robin” in which processor
assignment alternates between [0. . . p− 1] and [p− 1 . . .0].

These three strategies are applied to the data of Fig. 9, and the total computation time
per processor,Tk, wherek = 0 . . . p− 1, is accumulated for each. The speedup efficiency
can be computed from

E = Ttot/p max
k

Tk,
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FIG. 9. Weighted orthogonal complement projection timings as a function ofm for Nlat = 65 using the 2/3 rule.

whereTtot is the total execution timeTtot =
∑p−1

k=0 Tk. Distributions are considered for up
to Ntr/2= 21 processors. The resulting efficiencies are plotted in Fig. 10. Clearly, the
natural decomposition, which drops immediately to 70% and declines from there, is too
inefficient to consider. The round robin strategy steadily declines to 80% efficiency for the
maximum processor count, but the reversed round robin decomposition hovers at or above
90% efficiency for all processor counts, making it the preferred strategy of those studied.

This 10% loss from load imbalance may be acceptable in many cases, especially since
the serial WOC algorithm provides around 60% savings for most of the resolutions studied.
If not, a more complicated decomposition would be required, in which unequal numbers

FIG. 10. Estimated speedup efficiencies, resulting from load imbalance only, versus number of processorsp
for various decomposition strategies applied to the 2/3 rule weighted orthogonal complement projection.
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of m are stored on each processor. Load balancing should then be achieved in terms of the
entire time step algorithm for the model, which is beyond the scope of this paper.

6. CONCLUSIONS

The associated Legendre projection is a key component in the development of faster spec-
tral climate and weather models. Here we have reviewed six different algorithms: standard;
direct, fast multipole, weighted orthogonal complement, seminaive, and Mohlenkamp.

The standard algorithm provides the baseline comparison because it represents the cur-
rent behavior of associated Legendre transforms in modern atmospheric codes. The direct
method is a logical improvement on this approach, although the weighted orthogonal com-
plement projection has both a better operation count and a better memory requirement. The
fast multipole method, as a theoreticallyO(N2

lat) algorithm, holds the promise of a truly fast
algorithm, although its large overhead has prevented this from being realized at resolutions
of today and the near future. The Mohlenkamp algorithm, while potentially competitive at
higher resolutions, did not provide savings at the resolutions of interest.

The seminaive projection performed poorly compared to the other algorithms, but we
note a potential usefulness of the approach. In the model proposed by Cheong [10], spectral
calculations such as elliptic solvers, differentiation and time-stepping are done in double
Fourier space, which is strongly analogous toaC

m, the cosine transform of the discrete
Fourier functions. To apply the other algorithms to this model, sine and cosine transforms
are required to first transform the double Fourier coefficients toaF

m. Thus, if the seminaive
algorithm could be modified to (1) act upon double Fourier coefficients with (2)Ntr > Nlat/2,
it could actuallyeliminatesine and cosine transforms from the double Fourier model which
are necessary with the other algorithms. This will be the topic of a future study.

For resolutions studied here (Nlat < 300), the weighted orthogonal complement is the
most efficient algorithm. This is due in part to its relatively low operation count, but the
algorithm’s reutilization of matricesQ` andR` also permits a cache efficiency which results
in an overall savings, compared to the standard algorithm, from 60–80% for the untruncated
projection and from 40–70% for the 2/3 rule projection. For the fast multipole method, these
savings are 20–40% and 20–60%, respectively.

As for parallel implementation on a distributed memory architecture, the only problem
presented by the weighted orthogonal complement projection is that the nonstandard work
profile (as a function ofm) contributes to a load imbalance. In the context of a full model, a
decomposition with respect tom should distribute an equal number of zonal wave numbers
to each processor. This prevents a perfect balance of the projection work load. However,
experiments indicate that a reversed round robin decomposition results in only a 10% or
less loss in speedup efficiency as a result of imbalance. Nevertheless, the overall savings of
the weighted orthogonal complement algorithm still makes it the most attractive alternative.

APPENDIX: INTERNET RESOURCES

The seminaive transforms used here (in addition to the Driscoll–Healy midpoint and
hybrid algorithms) are a part of SpharmonicKit 2.5, available at

http://www.cs.dartmouth.edu/˜ geelong/sphere (A.1)
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The Mohlenkamp transforms are a part of the Fast Transforms for Spherical Harmonics
(FTSH 1.1) library available at

http://amath.colorado.edu/appm/faculty/mjm/libftsh.html (A.2)

The Basic Linear Algebra Subprograms (BLAS) can be found at

http://www.netlib.org/blas (A.3)
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