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The associated Legendre projection provides a means for accelerating the dynam-
ical core of a global weather or climate model. Therefore, the goal is to determine the
fastest possible projection algorithm, of which this paper compares six: the standard
method, which computes the projection using a forward and backward associated
Legendre transform; the direct method, which uses a single projection matrix when
this approach results in fewer operations; the fast multipole method; the weighted
orthogonal complement method; the seminaive method; and a projection based on
transforms proposed by Mohlenkamp. Timing results indicate that all the projections
behave likeO(N?®) algorithms up to at leastl = 200 spectral truncation. For this
range of resolutions, the weighted orthogonal complement has the lowest operation
count, best cache utilization, and best overall timings 2001 Academic Press

Key Words:spherical harmonics; associated Legendre functions; fast multipole
method; weighted orthogonal complement.

1. INTRODUCTION

The spectral transform method (STM) is a popular method for approximating the dyne
ics of the global atmosphere that requi@eN®) operations per time step, whelkeis the
spectral truncation of the model. Most other calculations in climate modeling and weat
forecasting are?(N?), with the exception of fast Fourier transforms (FFT), which are
O(NZ?log N). For this reason, the search for a comparable fast associated Legendre tr
form (the expensive component of a spherical harmonic transform) has been condu
for quite some time. Some success has been achieved [1-3], but at break-even resolt
which are too large for current global weather and climate applications.
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Recently [4], the authors solved the spherical shallow water equations (a 2-D subse
the global atmospheric dynamical equations) using an FFT-based pseudospectral me
This approach is well known to be unstable without the explicit projection of the solutic
onto the space of harmonic functions. With projection, the method yields (to within machi
accuracy) the same results as the STM. There are two important conclusions of this w
(1) the required number of associated Legendre transforms is reduced from nine (or mor
six and (2) the associated Legendre projection operator provides a new avenue of appr
in the search for a fast algorithm. Indeed, Jakob and Alpert [5] have published an asyi
totically ©(N?) associated Legendre projection (or filter, in their terminology) that use
the fast multipole method (FMM). This was subsequently improved by Yarvin and Rokhl
[6]. More recently, the authors [7] have developed a projection algorithm that reduces
memory requirement fron®(N?3) to @(N?) and requires half the number of operations
compared to standard associated Legendre transforms. For purposes of completenes
will also consider projection algorithms composed of the latest attempts at fast associ:
Legendre transforms.

Here, we compare implementations of four projection algorithms to determine (a) t
actual performance in terms & for the range of resolutions used by current atmo-
spheric models and (b) the relative performance of the algorithms. The organizatior
the paper is as follows: Section 2 covers background information related to the associ
Legendre projection, Section 3 describes the various projection algorithms to be compa
Section 4 presents serial timing comparisons of these algorithms, Section 5 discusses
allel implementations of the projection algorithms, and conclusions are drawn in Sectior

2. BACKGROUND

2.1. Spherical Harmonic Transforms

A smooth spherical functiori (1, 0), where 0< 1 < 2r is the longitude and-7/2 <
0 < m/2isthelatitude, can be approximated to spectral dxbiey an expansion of spherical
harmonics given by

N N
F(L0) =) " PI®)(@mn COSMA + by SiNMA), (1)

m=0n=m

where F7nm(9) are the normalized associated Legendre functions

dn+m

dxn+m

PM©6) =

1 [2n-|—1(n—m)! o — 1

1/2
cosmé
2"n! 2 (n+ m)!}

with x = siné.
The computation o0&, » andby, , (or harmonic analysis) in (1) consists of two phases
First, a Fourier transform yields the Fourier functions

2

am(@) = f (A, 0)cosmada, (2a)
0

2
bm(e):/ f(x,0)sinmirda, (2b)
0
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followed by an associated Legendre transform to obtain

/2 _
amn = / am(0)P]'(0) coso db. 3
—/2

An analogous equation providbg » in terms ofb,(9). All subsequent equations fog, »
and b, (9) will not be written, because they have the same form as the correspond
equations foay, , andam(6).

The computation off (1, ) (or harmonic synthesis) in (1) also occurs in two phases
First, compute

N
an(0) = anaPr(©), @)
followed by
N
f(r,0) = Z(am(e) COSMA + bm(6) sinma). (5)
m=0

Equations (2a) and (2b) are forward Fourier transforms and (5) is a backward Fourier trz
form. Neither are considered in this work because fast algorithms exist for these operati
Equations (3) and (4) are forward and backward associated Legendre transforms, res
tively, which do not in general have fast algorithms and are consequently the focus of
work presented here.

2.2. Associated Legendre Transforms on Gauss Grids

We discretizef (1, 6) by choosing.i,i = 1... Ngnanddj, j = 1... Nigt. If & isequally
spaced, we can utilize fast Fourier transforms for (2a), (2b), and (5), making this the obvi
choice. Thed; are most often chosen such that= sind;, where thex; are the Gauss—
Legendre quadrature points or1, 1]. Thus the discrete form of (3) for the Gauss grid
becomes

Nlat _
amn =Y am(0) P 6w, (6)
j=1

wherew; are the Gauss weights or 1, 1]. In matrix notation, the backward and forward
associated Legendre transforms, (4) and (6) respectively, can be written

a:; = Pmar?v (7)
a> =PTwal, (8)
whereal, = [am(61) .. . am(On,)] " arethe discrete Fourier functioms, = [amm . . . amn]"

are the spherical harmonic coefficieritg,is the Nig; x Nig: diagonal weight matrix such
that(W); ; = wj, andPp is theNiyr x (N — m + 1) backward transform matrix given by

PM@) - PO
o _ . .

Pm(eN\al) e F)rl‘l\lﬂI (eNlat)
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Note that we have two distinct upper summation bouhdsndN,,:. A uniform resolution
ofwaves onthe sphereis achieved via atriangular truncation or equivalently by the restric
N < min(Nja, Nion/2). Often, it is desirable foN to be even smaller. As an example, for
nonlinear PDEs with quadratic terms, th&82ule N = [min(2N4, Nion) — 1]/3 is used to
prevent aliasing errors. Other truncations are possible as well. For this reason, in the fu
we will substituteNy for N to indicate a (possibly) truncated expansion.

2.3. Associated Legendre Transforms on Arbitrary Grids

Machenhauer [8] extended discrete associated Legendre transforms to equally sp
gridsé; in such a way that they could be computed in the same number of operations as
Gaussian distributions. In [7], this capability was extended to arbitrary grids as follows. T
backward transform matrii, is defined as before, but thd,; x N5 weight matrix is no
longer diagonal and is different for even and addFor evenm, Wy = (PoP} )1, where
Py is constructed folN; = Nj;t — 1. For oddm, W, = (I51I5{)*1, Where|51 is a rank-one
augmentation oP;; see [7] for details. If we define and store the forward transform matri

zh=pPlw,, 9)

where¢ = 0 (1) if mis even (odd), then the Gaussian and arbitrary grid transforms c:
be computed in the same number of operations, at the expense of doubling the sto
requirements. Thus the forward transform (8) becomes

an = Znh, (10)

and the backward transform (7) is equally valid on a Gauss or arbitrary grid. Note tl
the forward transform matrix defined in (9) is equivalent to the forward transform matr
defined by Machenhauer [8] for the case wigiis an equally spaced grid.

2.4. The Associated Legendre Projection

The vector of discrete Fourier function§ has constant lengths, while the vector of
spherical harmonic coefficiera§ has the usually shorter (never longer) lenigth— m + 1.
Thus the computation @ in (10) followed by the recomputation af, in (7) will usually
result in the loss of degrees of freedom for all cases exteptO whenNy = Nig — 1.
Specifically, this operation will perform a weighted least squares projection [9] of tt
original a'. onto the space of the associated Legendre functions with triangular truncat
Ny, and can be written

& =PnZral, (11)
= Fnal, (12)

whereFy, = PmZL is theNja: x Nz associated Legendre projection matrix for zonal wave
numbem, anda, is the vector of projected discrete Fourier functions.

This projection operator is useful [4, 10] for stabilizing spherical shallow water moc
els with nonspherical harmonic numerical approximations. In its “naive” form (11), th
projection costs the same as two associated Legendre transforms. A three-variable sh:
water model requires the equivalent of six associated Legendre transforms for stabilizat
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as compared to nine transforms for the most efficient spectral transform model [11]. T
alone represents a speedup that is compounded using the accelerated projection algot
compared in this paper.

3. PROJECTION ALGORITHMS

The application for which the following projection algorithms are intended is an a
mospheric model with equally spaced latitude points. Because the point distributior
symmetric about the equator, and the associated Legendre functions are either symn
or antisymmetric about the equator, all the algorithms take advantage of the well-knc
symmetry optimization. Namely, the, are decomposed into even and odd component
before the computations, resulting in two sets of computations with a quarter of the origi
number of operations, giving an overall savings of a factor of two.

3.1. The Standard Algorithm

The standard algorithm explicitly computa§ from (10) and ther&|, from (7). The
theoretical mult/add operation count (and the standard against which we will measure o
projections) for this algorithm is

Cstd(M) = Niagt(Ny — m+ 1),

which is plotted in Fig. 1 and labeled “Std.” Here we present the operation counts for th
projections, as functions afi, to clearly reveal contributions to the total operation counts

3.2. The Direct Algorithm

The direct algorithm was proposed by Yarvin and Rokhlin [6] as a reference comparis
for the FMM. It computes the projection two different ways: by direct computation of (1!
for largem, or of (12) for smallm. The crossover occurs at = Ny + 1 — Nig/2. The
resulting operation count for the direct method is

N|§1/2, mMm=< Ny +1-— Nlat/2,

(13)
Niat(Ngr —m+1), m> Ny + 1 — Nig/2.

Co(m) = {

The expressiop(m) is plotted in Fig. 1 and labeled “D.”

C(m) No Truncation 20(7”) With Truncation
Nlat2 Nlat
Std
Nlat(Ntr"'l) ) Std
1 2 D 1 2 |D
§Nlat N 'Q'Nlat T I
|
! Nigt (N 7 WOC
i
Woc, ~Ne-1) |
I |
0 T m 0 t Y m
0 %Nlat Nlat 0 Ntr"‘]- Ntr+1 Nat

1
_§Nlat

FIG. 1. Operation counts fo©(N?®) algorithms. “Std” refers to the standard algorithm, “D” to the direct
method, and “WOC” to the weighted orthogonal complement.
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FIG. 2. Theoretical savings curves, relative to the standard algorithm as a functi®e=0l5./(Ny + 1).

We can estimate the theoretical savings of the direct algorithm relative to the stand
algorithm by

$S=1

_ 2f;"Co(mdm (1 R)Z 14

2 [V Csta(m) dm B 2

whereR is the ratioR = Njz/(Nir + 1). Specifically, alR = 1 (no truncation), the savings
is 25%, and aR = 1.5 (the 2/3 rule), the saviggs is 6.25%. The 2s preceding the integra
in (14) are the result of computing badfj andb,,, for everym. Equation (14) is plotted in
Fig. 2, as a comparison of algorithm savings versus the standard algorithm.

The direct algorithm as described in [6], and implemented in the results section, conte
an additional optimization by noting thﬂ_nm(ej) is zero to absolute machine accuracy
in a neighborhood of the poles that increases with increasinghe effect, not included
in (13) and (14) nor Figs. 1 and 2, is to provide a savings of approximately 10%. V
will refer to this as the pole optimization. Note that it would be possible to apply th
pole optimization to the standard algorithm, but since production codes for spectral glo
weather or climate models do not generally employ this optimization, not including it wi
the standard algorithm provides a more meaningful comparison.

3.3. The Fast Multipole Algorithm

Jakob-Chien and Alpert [5] proposed an associated Legendre projection which ta
advantage of the fast multipole method, resulting in an asymptoti€¢xilyz2,) algorithm.
They observe from (4) and (6) that given discrete Fourier functions on a Gauss grid,
projected Fourier function can be computed at &y

Ntr Nlat

&n(0) =Y Y PR©) PR ©)wjam(6))
n=m j=1
Niat Nir

= wjan@) Y PRE)PT®),

j=1 n=m
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to which the Christoffel-Darboux formula can be applied to give

Nlal Nlal .
() NG )Z—w’a"‘(e PR, O Nt,(e>z wian@DPR®) g

— pm
N sing — sing;

e 41 sind — sing;

where

M= /(N2 —m?)/(4n2 — 1).

Foro = 6; the quotient is evaluated using ldpital’s rule. The right-hand side of (15) can
be evaluated foN,y; differentds for a giverm with two applications of the FMM ii® (N4;)
operations. A complete projection for atlis thusO(NjaNy).

Application for a Gauss grid is obvious: simply chodke- 6;, wherep; are Gauss
nodes in latitude fofj = 1... Njg. For an arbitrary grid, function values on the grid can
first be interpolated to a Gauss grid with a single application of the FMM [12] before (1
is computed. Our experiments indicate that this interpolation adds less than 5% overt
to the calculation compared to a Gauss grid computation.

Yarvin and Rokhlin [6] improved upon the FMM approach, and their implementation
compared in the current work. In [6], it is observed that Eq. (11) is still the fastest algoritt
for largem, and although it is utilized in their fast multipole algorithm, they do not mentiol
at whatm the switch is made.

The operation count for the FMM can be approximated by

Crvm (M) &~ K Nigt,

whereK is a constant and depends in part on some implementation choices such as de
accuracy (we chose for our experiments an accuracy of)1&ince the vertical axes in
Fig. 1 are scaled b2, Cewm (M), does not have a convenient representation on the plc
As anO(N2, algorithm with significant overhead, the resolution at which its experiment
timings break even with the other algorithms is of interest.

3.4. The Weighted Orthogonal Complement Algorithm

The weighted orthogonal complement (WOC) projection is developed in [7] for no
truncated expansions. Here we review that algorithm and develop the truncated vers
In [7], the Nigt x Nt weighted orthogonal complement matric@sand their inverseR*
are defined fo = 0 and 1. These in turn define thd, x (Niax — m) matricesQf, and
RS which are obtained by deleting the firatcolumns fromQ* andR?, respectively. It is
demonstrated that the projection is given by

0, meven
Fn=Q4(RY)", e:{’ 16
m Qm( m) 1’ m Odd ( )
which provides an alternative to (11) with the same operation count, but which requi
(’)(N|at) storage rathertha(ﬁ(N|atN ). Note that because [7] assunis = Ny — 1, QO =
Q%andR) =
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We can_us@“ gndR‘Z to improve the operation count of the projection. Defifig x m
matricesQf, andR{, as the firsm columns ofQ* andR’ so that

QE = [_ﬁqv Qﬁ] ,
R =[RS, RY).

ThusQY, andRY, havem columns, or equivalently the size of these matrices increases wi
increasingm. The sizes of matrice®, andR, behave in the opposite manner. It follows
for the untruncated case that

| =Fo=Q'RY" =Q4,(R,)" +Q4(R,)
for anym. Equivalently,l = G, + Fn, whereG,, = éfn(F_efn)T, giving

8= [| — Qn(RL) ], (17)

Thus the projection for a givem can be computed witiN,;; x m mult/adds, which is a
significant improvement over (16) fon < Nig/2.

To extend the WOC to truncated projections, we must alter our definitions of the orthc
onal complement matrices. Namely, the truncated transform ma@igendRY, are now
obtained by deleting the firsh columns fromQ¢ andR? as well asthe lastNj;; — Ny — 1
columns, giving them dimensidiia x (N — m+ 1). ThusQ§ # Q% andR§ # R° unless
N¢r = Niat — 1. These last columns become par@jf andRY,, which now have dimension
Niat X (Nigt — N¢ + m — 1), and thus the truncation space always resides in these matric
By changing the matrices in this way, we decrease the number of operations required by
for a givenm and increase the number of operations required by (17). The WOC operat
countis

Nlat( Nlat - Ntr +m-— 1)7 m=< Ntr +1- Nlat/27

Cwoc(m) =
{Nlat(Ntr —m+ 1), m > Ny + 1 — Niat/2.

An estimate of the theoretical savings of the WOC algorithm relative to the standard als
rithm is

Svoc=1

_ 2Jg" Cwoctm dm _ ( R)2 (8

2 foNtr Cstg(m)dm 2\ 2
where R is again the ratilR = Nig/(Ny + 1). At R =1 (no truncation), the savings is
50%, and aR = 1.5 (the 2/3 rule), the savings is 12.5%. An additional savings is obtaine
by using the pole optimization described at the end of Section 3.2.

Figure 1is an illustration of the operation counts for the tiP¢dl ) algorithms with and
without truncation. The truncated plot is simply a leftward shift of the untruncated plot wit
the left-most operations eliminated. It also illustrates that there is still no direct algoritf
with a lower operation count than the standard approacmfer Ni + 1 — Niat/2.

Figure 2 is a plot of Egs. (14) and (18) to illustrate the relative savings of the direct a
WOC algorithms with respect to the standard algorithm.
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3.5. The Seminaive Algorithm

The seminaive algorithm is based upon forward and backward seminaive transfor
which are the standards against which Heslgil. [2] compare their transforms. A forward
seminaive transform consists of computifg, which is the discrete cosine transform of
al. Using ideas inspired by Dilts [13], the;, are computed directly fror$, using dense
matrices. The transform matrices convertingafidack toaS, contain zeroes which can be
exploited for a 33.3% savings. Thus the computation of the projected cosine coefficients
be done at a savings of roughly 16.7% compared to the standard algorithm. To thisyou r
add the overhead of the discrete cosine transforms in order to stagjthd end witra.

We used the software package SpharmonicKit 2.5 (A.1) to obtain timing results
the seminaive algorithm, which has certain restrictions. Namely, the package requires
Niat = 2Ny, which we compare to the untruncated algorithms, leaving no suitable opti
for comparing against/3 rule algorithms. SpharmonicKit contains additional transforn
routines, namely the Driscoll-Healy midpoint algorithm and the hybrid algorithm. The
are known to be slower than the seminaive algorithm at the resolutions of interest, so t
development was not pursued.

3.6. The Mohlenkamp Algorithm

Mohlenkamp [3] has proposed associated Legendre transforms with computational c
plexitiesO(N*2log N) andO(N?(log N)?). These rates are achieved by partitioning lati-
tude space and using local trigonometric expansions. Whil©tié?(log N)?) algorithm
is asymptotically faster, th€@(N%2log N) algorithm performs better at the resolutions of
interest and is the one compared here. Mohlenkamp has made publicly available a lib
(A.2) called FTSH 1.1 (Fast Transforms for Spherical Harmonics), from which we co
structed a projection algorithm for timing comparisons. These routines allow the accur
to be specified; we chose 10to be consistent with the fast multipole projection.

4. SERIAL TIMING RESULTS

Although the discrete harmonic projection has been generalized to arbitrary point (
tributions, for our experiments we have chosen (when the given algorithm allows it)
unshifted equally spaced distribution which includes the poles, because the majority
global atmospheric models that can take advantage of the projection are formulated or
uispaced grids. For this distribution, an equiangular grid is givelQy= Nion/2 + 1. Thus
for the untruncated projectioNy = min(Njat, Nion/2) — 1 = Nion/2 — 1 = Nizt — 2, and
for the 2/3 rule projectionNy = [MiN(2Njat, Nion) — 1]/3 = (Nign — 1)/3 = 2Nj5t/3 — 1.

We begin with an attempt to obtain timing results which mirror the theoretical operati
count plots of Fig. 1 for a giveM 3 with no truncation. As Fig. 3 indicates, factors other
than operation count have an impact on timings of the standard algorithm, in this case
Niat = 65. This figure represents the results of three nearly identical codes which perfc
an associated Legendre projection via (11), (16), and (17), respectively. The only optim
tion included is the symmetry reduction and thus this plot does not represent results
complete algorithms. The codes differ only in the calling argumendgéav, the double
precision basic linear algebra subprogram (BLAS) routine (A.3) which performs a sint
matrix—vector product. As the first two lines represent algorithms with identical operati
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FIG. 3. Standard and weighted orthogonal complement timings as a functiorfaf the untruncated pro-
jection atNy, = 65.

counts, we can conclude that the difference in timings is due to memory and hardware
fects. The standard algorithm requires that a RgyandZ | be loaded into cache for every
m. The other two routines, however, can reuse@iendR’ once they have been loaded.
This strongly suggests that cache reutilization accounts for the improved performance of
WOC algorithms over the standard algorithm. Obviously, this performance gain is resc
tion and hardware specific; different sizes and levels of cache can have a great effect. In
case, results are on a Sun Ultra 60 processor with 4MB cache and the standard algor
incurs approximately 15% overhead. Experiments at other resolutions indicate that ce
overhead for the standard algorithm at other resolutions are generally worse. Note tha
weighted orthogonal complement algorithms are not immune from cache effects, but
performance loss is less pronounced than for the standard algorithm.

Itis known [14, 15] that the standard algorithm can be implemented@iti2,) storage.
Only 52 and 5,1] are stored and all other associated Legendre functions are computed
the-fly using an orthogonal and consequently very accurate four-term recurrence rela
[7]. In fact, this approach can be used to reduce memory bandwidth problems such as t
illustrated in Fig. 3. This technique becomes more desirable as processor speeds con
to outpace memory speed. However, the WOC algorithms require fewer operations t
an algorithm in which the associated Legendre functions must be computed on-the-fly.
this reason, the compute-on-the-fly algorithm is not considered here.

Both the direct and FMM algorithms also require the loading of &2, matrices
into cache for everyn, and so it is likely that they will exhibit the same type of timing
characteristics as the standard algorithm. Figure 4 is a timing plot for these algorithm:
the same resolution and on the same scale as Fig. 3. Included in the plot is the comj
WOC algorithm, which now includes the pole optimization as well as the crossover swit
between Egs. (16) and (17), and as such it provides the actual performance compari
Evidently, the direct and FMM algorithms are experiencing poor cache performance
seen by comparing the direct method in Figs. 1 and 4. Nevertheless, the direct met
represents a clear savings over the standard approach. At this resolution, the total F
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FIG. 4. Direct, fast multipole, and complete weighted orthogonal complement timings as a functicioof
the untruncated projection &l = 65.

time is roughly equivalent to the direct approach. The WOC curve is relatively smooth, ¢
careful inspection reveals a performance increase compared to the simpler implement:
in Fig. 3, which does not include the pole optimization.

Given the results in Figs. 3 and 4, we can predict that the full projection algorith
timings should result in a greater savings for the WOC algorithm relative to the othe
than is predicted by the operation counts in Section 3. This prediction is realized by
results plotted in Figs. 5 and 6, which are full projection timings without truncation ar
with the 2/3 rule, respectively. The sequence of resolutions studied are as in [5] (except
the seminaive algorithm, which requires thdt; be a power of two), and the maximum

10° .
10 F 1
9]
s 2
B
3| Seminaive —e— |
10 Mohlenkamp ——
Standard ——
Direct ——
FMM —s—
" wWOC —=—
107 :
10 100 1000

Nlat

FIG.5. Experimental, untruncated projection timingsNig.
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10 100 1000

FIG. 6. Experimental, 23 rule projection timings v

resolution for a given algorithm is determined by the largest problem that can be store«
the 128MB of memory on the Sun Ultra 60 workstation on which the experiments we
performed. Because of it8(N2,) storage requirement, the WOC algorithm could be timec
at higher resolutions than the other algorithms.

Predictably, the standard and WOC algorithm timings bound the direct method timin
but more interestingly, these tv@(N3,) algorithms also bound the FMM, which indicates
that the FMM has not yet reached an asymptot@ aifl2,).

The FMM performance can be characterized as follows: it is always faster than f
standard algorithm; it is slower than the WOC algorithm at all of the resolutions studie
and it performs comparably to the direct method, although it does break even and sur,
the direct method a¥l;, = 63, 79 for the untruncated and'2 rule projections, respectively.

The Mohlenkamp projection is slower than the standard algorithm at almost all t
resolutions studied, although it may exhibit a slope slightly less tha@?tiN) curves. For
the 2/3 rule, itintersects the standard curve at approximatigly= 200, which is consistent
with Mohlenkamp’s claim of break-even timingsht = 128 [3]. The seminaive projection,
which is timed only for the untruncated case, exhibits significant overhead because of
required discrete cosine transforms and the fact that the required latitude points are do
the number of the other algorithms.

Figures 5 and 6 are log—log plots to highlight the slopes of the lines, but this format mal
the percent savings of the various algorithms relative to the standard algorithm difficul
discern. These savings are plotted in Figs. 7 and 8 for the untruncated 2ingl@ cases,
respectively. The seminaive and Mohlenkamp algorithms are not shown because they
not result in savings for the resolutions studied.

Recall that the theoretical savings resulting from operation counts for the direct mett
is 12.5% and 6.25% for untruncated antB2ule, respectively. For the WOC algorithm,
the operation count savings are 50% and 25%, respectively. The results of Figs. 7 al
are always superior to these estimates and often far superior. These additional saving
due to the pole optimization, and in the case of the WOC, cache reutilization. Note t
the minimum savings for the WOC algorithm occur at or near the resolution plotted
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FIG. 7. Experimental, untruncated projection savings relative to the standard algoritNim.vs

Fig. 3, indicating that the cache overhead for the standard algorithm plotted in this figur
worse for higher resolutions (or equivalently, the cache efficiency for the WOC algoritt
is better). The percent savings for the WOC algorithm is often higher than 80% and 6
for the untruncated and/3 rule projections, respectively.

5. ADISCUSSION OF PARALLEL IMPLEMENTATIONS

Global weather and climate codes are large enough that distributed memory parallel
plementations are necessary, and if a projection algorithm is to be used in such a ¢
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FIG. 8. Experimental, 23 rule projection savings relative to the standard algorithrilys
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a strategy for parallel implementation must be devised. In current spectral models, c
munication is isolated and minimized by utilizing 1-D decompositions in the latitude ar
longitude directions and using a parallel transpose algorithm to transfer between the
representations, depending on which decomposition is needed at which point in the
ecution of a single time step. In practice, the discrete Fourier funcéfnand bl are
transposed, so these functions are decomposed two ways, namely, with respect to lat
coordinate®; and with respect to zonal wave numlperSince the projection operates on
al andbf, and all the algorithms can be logically decomposed with respevt fmarallel
implementation of the projection algorithm is straightforward: decompose with respect
m; communication will occur elsewhere in the model.

A well-designed model using the associated Legendre projection (see, for example, [
will not add any additional transposes compared to the standard spectral transform met
Therefore, the key issue in parallelizing a projection algorithm is domain decompositi
with respect tan and the resulting load balance. Load balancing for triangular work profile
such as the standard algorithm is accomplished in the straightforward manner of matcl
m with large operation counts with correspondimgwith low operation counts. For the
standard algorithm, wave numberwould be matched with wave nhumbbk. — m, and
then the matched wave numbers could be distributed equally across processors. Simi
for the untruncated WOC algorithmn could be matched withliy;/2 + m (for m < Njzt/2)
to achieve a balanced workload.

A load balancing problem occurs when we attempt to decompose the direct or W«
algorithms for a truncated projection. As an inspection of the right plot of Fig. 1 revea
there is no trivial matching of wave numbers which will balance the direct or WOC worl
loads while simultaneously allowing @gualdecomposition with respect to. This equal
decomposition is critical because there are other pieces of the model which will requir
decomposition with respect ta: spatial differentiation, right-hand side calculations, time
stepping, elliptic solvers, and so forth. These other pieces can be balanced with an e
number ofm per processor.

Since the WOC projection algorithm is the most efficient in terms of operation cout
cache utilization, and overall performance, we will restrict our investigation of parall
implementations to this algorithm. We seek first a timing profile of the projection as
function ofm for a typical resolutionj;: = 65) using the 23 rule (N = 42). This profile
is given in Fig. 9.

Our goal now is to apply various decomposition strategies, with respattttothe data
presented in Fig. 9 in order to obtain an estimate of how load imbalance will affect scalil
The first strategy will be the “natural” decomposition, where contiguous chunks of si
N/ p are assigned tp processors numbered 0 p — 1. The second strategy will be the
“round robin” decomposition, in which each consecutivés assigned to a new processor,
starting with 0. When the last processor number is reached, the processor assignment s
to 0. The last strategy to be investigated will be “reversed round robin” in which proces:
assignment alternates between [Op — 1]and [p—1...0].

These three strategies are applied to the data of Fig. 9, and the total computation 1
per processoiTy, wherek = 0... p — 1, is accumulated for each. The speedup efficienc
can be computed from

E = Ttot/pmkaka,
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FIG.9. Weighted orthogonal complement projection timings as a functiorfof N, = 65 usingthe 23rule.

whereT, is the total execution tim&, = Zf;& Tk. Distributions are considered for up
to Ni/2 = 21 processors. The resulting efficiencies are plotted in Fig. 10. Clearly, t
natural decomposition, which drops immediately to 70% and declines from there, is
inefficient to consider. The round robin strategy steadily declines to 80% efficiency for
maximum processor count, but the reversed round robin decomposition hovers at or al
90% efficiency for all processor counts, making it the preferred strategy of those studie
This 10% loss from load imbalance may be acceptable in many cases, especially s
the serial WOC algorithm provides around 60% savings for most of the resolutions stud
If not, a more complicated decomposition would be required, in which unequal numb
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FIG. 10. Estimated speedup efficiencies, resulting from load imbalance only, versus number of propesso
for various decomposition strategies applied to t)i@ ile weighted orthogonal complement projection.
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of m are stored on each processor. Load balancing should then be achieved in terms o
entire time step algorithm for the model, which is beyond the scope of this paper.

6. CONCLUSIONS

The associated Legendre projection is a key component in the development of faster s
tral climate and weather models. Here we have reviewed six different algorithms: stand:
direct, fast multipole, weighted orthogonal complement, seminaive, and Mohlenkamp.

The standard algorithm provides the baseline comparison because it represents the
rent behavior of associated Legendre transforms in modern atmospheric codes. The ¢
method is a logical improvement on this approach, although the weighted orthogonal c
plement projection has both a better operation count and a better memory requirement.
fast multipole method, as a theoreticallyN2,) algorithm, holds the promise of a truly fast
algorithm, although its large overhead has prevented this from being realized at resolut
of today and the near future. The Mohlenkamp algorithm, while potentially competitive
higher resolutions, did not provide savings at the resolutions of interest.

The seminaive projection performed poorly compared to the other algorithms, but
note a potential usefulness of the approach. In the model proposed by Cheong [10], spe
calculations such as elliptic solvers, differentiation and time-stepping are done in dou
Fourier space, which is strongly analogousafg the cosine transform of the discrete
Fourier functions. To apply the other algorithms to this model, sine and cosine transfor
are required to first transform the double Fourier coefficientg tarhus, if the seminaive
algorithm could be modified to (1) act upon double Fourier coefficients witR{2} Niat/2,
it could actuallyeliminatesine and cosine transforms from the double Fourier model whic
are necessary with the other algorithms. This will be the topic of a future study.

For resolutions studied her&g; < 300), the weighted orthogonal complement is the
most efficient algorithm. This is due in part to its relatively low operation count, but tf
algorithm’s reutilization of matrice®* andR* also permits a cache efficiency which results
in an overall savings, compared to the standard algorithm, from 60—-80% for the untrunce
projection and from 40—70% for the 2rule projection. For the fast multipole method, these
savings are 20—-40% and 20-60%, respectively.

As for parallel implementation on a distributed memory architecture, the only proble
presented by the weighted orthogonal complement projection is that the nonstandard v
profile (as a function ofn) contributes to a load imbalance. In the context of a full model,
decomposition with respect to should distribute an equal number of zonal wave number
to each processor. This prevents a perfect balance of the projection work load. Howe
experiments indicate that a reversed round robin decomposition results in only a 10%
less loss in speedup efficiency as a result of imbalance. Nevertheless, the overall savin
the weighted orthogonal complement algorithm still makes it the most attractive alternati

APPENDIX: INTERNET RESOURCES

The seminaive transforms used here (in addition to the Driscoll-Healy midpoint a
hybrid algorithms) are a part of SpharmonicKit 2.5, available at

http://lwww.cs.dartmouth.edu/” geelong/sphere (A.1]
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The Mohlenkamp transforms are a part of the Fast Transforms for Spherical Harmot
(FTSH 1.1) library available at

http://amath.colorado.edu/appm/faculty/mjm/libftsh.html (A.2)
The Basic Linear Algebra Subprograms (BLAS) can be found at

http://www.netlib.org/blas (A.3)
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